Article ID Journal Published Year Pages File Type
8909121 Marine and Petroleum Geology 2018 55 Pages PDF
Abstract
Syn-Strat generates a 3D graphical surface that represents accommodation. Although the model has the capacity to model footwall variation, here we present model results from the hangingwall of a normal fault, with temporal and spatial (dip and strike) predictions made of stacking patterns and systems tracts for a given set of controls. Sensitivity tests are tied to the depositional architecture of field-based examples from the Loreto Basin, Gulf of California and Alkyonides Basin, Gulf of Corinth. Here, the relative influence of major sedimentary controls, different subsidence histories, varying sedimentation distribution, including along-strike variation in stacking patterns, are assessed and demonstrate the potential of Syn-Strat for reducing subsurface uncertainties by resolving multiple scenarios. In addition, the model demonstrates the nature of diachroneity of key stratigraphic surfaces that can arise in syn-rift settings, which could be represented by a bypass surface (sequence boundary) or reservoir seal (which could include the maximum flooding surface) in the rock record. Enabling a quantitative assessment of these surfaces is critical for prospect analysis in hangingwall half-graben-fills, where these surfaces are heavily relied upon for well correlations that are used for hydrocarbon volume and production rate predictions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , ,