Article ID Journal Published Year Pages File Type
8918108 Current Opinion in Systems Biology 2017 10 Pages PDF
Abstract
Single cell transcriptomic data allow us to probe the transcriptional changes occurring during cell development in unprecedented detail. These complex datasets are driving the development of new computational and statistical tools that are revolutionizing our understanding of differentiation processes. Many clustering and dimensionality reduction methods exist to aid visualization and exploration of structure in these datasets. Increasingly, pseudotemporal ordering and network inference algorithms are emerging that aim to elucidate the regulatory mechanisms that drive and control changes in gene expression state. Combining multiple analytical approaches enables us to make best use of the complementary information they offer, and provides the detail needed to infer mathematical models describing the structure and dynamics of gene regulatory networks.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,