Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8943671 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2018 | 11 Pages |
Abstract
Brown adipocytes (BAs) exhibit an energy-expending signature that is important in balancing metabolic homeostasis. In this study, results of transcriptome analyses revealed the reprogrammed splicing profile of the PR domain containing 16 (PRDM16) gene, a key transcription factor involved in brown adipogenesis, throughout development of wild-type brown adipose tissues (BATs). Moreover, discriminative splicing patterns of PRDM16 transcripts were noted in embryonic and postnatal RBM4aâ/â BATs. Overexpression of RBM4a enhanced the relative levels of PRDM16-ex 16 transcripts by simultaneously interacting with exonic and intronic CU elements, which encoded the PRDM16S isoform containing a distinct C-terminus. The presence of the overexpressed PRDM16S isoform showed a stronger effect than the overexpressed PRDM16L isoform on enhancing transcriptional activity of the RBM4a and the PGC-1α promoter. Overexpression of the PRDM16S isoform exerted more-prominent effects on enhancing the BAT-related gene program and energy expenditure compared to those of PRDM16L-overexpressing cells. Our studies demonstrated that RBM4a-regulated alternative splicing constituted another regulatory mechanism for strengthening the influence of PRDM16 on the development of brown adipocytes.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Yi-Lin Chi, Jung-Chun Lin,