Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8943712 | International Journal of Biological Macromolecules | 2018 | 26 Pages |
Abstract
Tissue engineering aims to repair or replace damaged tissues or organs using biomedical scaffolds cultured with cells. The scaffolds composed of biomaterials should guide the cells to mature into functional tissues or organs. An ideal scaffold to regenerate hard tissues should have mechanical stability as well as biocompatibilities. It has been well known that gelatin can provide outstanding biological activities, but its low mechanical stability can be one of obstacles to be used in hard tissue regeneration. To overcome the issue, we used PVA, which can reinforce the low mechanical stability of the gelatin. The gelatin/PVA scaffolds have been fabricated using a low temperature 3D-printing process. By manipulating various weight fractions of PVA/gelatin, we can obtain the optimal mixture ratio in aspect of the physical and biological properties of the scaffolds. As a result, a weight fraction of 5:5 showed appropriate mechanical strength and enhanced cell activities, such as cell proliferation and differentiation. The gelatin/PVA scaffold showed potential for future application as biomedical scaffold in soft and hard tissue regeneration.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Haeri Kim, Gi Hoon Yang, Chang Hyun Choi, Yong Suk Cho, GeunHyung Kim,