Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8953901 | Journal of Computational Physics | 2018 | 20 Pages |
Abstract
Many approaches have been taken to solve the Bloch-Torrey equation but an efficient high performance computing framework is still missing. In this paper, we present formulations of the interface as well as the exterior boundary conditions that are computationally efficient and suitable for arbitrary order finite elements and parallelization. In particular, the formulations are based on the partition of unity concept which allows for a discontinuous solution across interfaces conforming with the mesh with weak enforcement of real (in the case of interior interfaces) and artificial (in the case of exterior boundaries) permeability conditions as well as an operator splitting for the exterior boundary conditions. The method is straightforward to implement and it is available in FEniCS for moderate-scale simulations and in FEniCS-HPC for large-scale simulations. The order of accuracy of the resulting method is validated in numerical tests and a good scalability is shown for the parallel implementation. We show that the simulated dMRI signals offer good approximations to reference signals in cases where the latter are available and we performed simulations for a realistic model of a neuron to show that the method can be used for complex geometries.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Van-Dang Nguyen, Johan Jansson, Johan Hoffman, Jing-Rebecca Li,