Article ID Journal Published Year Pages File Type
8959471 Journal of Functional Analysis 2018 40 Pages PDF
Abstract
We show that all nonnegative solutions of the critical semilinear elliptic equation involving the regional fractional Laplacian are locally universally bounded. This strongly contrasts with the standard fractional Laplacian case. Secondly, we consider the fractional critical elliptic equations with nonnegative potentials. We prove compactness of solutions provided the potentials only have non-degenerate zeros. Corresponding to Schoen's Weyl tensor vanishing conjecture for the Yamabe equation on manifolds, we establish a Laplacian vanishing rate of the potentials at blow-up points of solutions.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,