Article ID Journal Published Year Pages File Type
8961259 International Journal of Hydrogen Energy 2018 10 Pages PDF
Abstract
Biogas conversion to syngas (mainly H2 and CO) is considered an upgrade method that yields a fuel with a higher energy density. Studies on syngas production were conducted on an inert porous media reactor under a filtration combustion mode of biogas with steam addition, as a non-catalytic method for biogas valorization. The reactor was operated under a constant filtration velocity of 34.4 cm/s, equivalence ratio of 2.0, and biogas concentration of 60 vol% Natural Gas/40 vol% CO2, while the steam to carbon ratio (S/C) was varied between 0.0 and 2.0. Total volumetric flow remained constant at 7 L/min. Combustion wave temperature and propagation rate, product gas composition, reactants conversion as well as H2 and CO selectivity were measured as a function of S/C ratio. Chromatographic parameters, method validation and measurement uncertainty were developed and optimized. It was observed that S/C ratio of 2.0 gave optimal results under studied conditions for biogas conversion, leading to maximum concentrations of 10.34 vol% H2, 9.98 vol% CO and highest thermal efficiency of 64.2% associated with a modified EROI of 46.3%, which considered energy consumption for steam supply. Conclusions indicated that the increment of the steam co-fed with the reactants favored the non-catalytic conversion of biogas and thus resulted in an effective fuel upgrading.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,