Article ID Journal Published Year Pages File Type
8993334 Il Farmaco 2005 6 Pages PDF
Abstract
In the current investigation, paclitaxel (PCL) delivery into the different layers of skin, vehicle optimization and relationship between vehicle composition and the relative contribution of solubility, partition and diffusion towards drug transport has been outlined. Saturation solubility of PCL was determined in ethanol (EtOH), isopropyl myristate (IPM) and their binary combinations, and partition studies performed to study the probability of skin depot formation. Epidermal and dermal partitioning was carried from PCL saturated vehicles. Skin permeation of PCL was studied using the rat skin. FT-IR has been utilized to study the skin barrier perturbation, and the localization of PCL and isopropyl myristate (IPM) in epidermis. High Kapp value in mineral oil/buffer indicated the tendency of PCL to form a reservoir in skin, and an inverse relationship between PCL solubility in different solvent systems and partitioning into epidermis was found. Maximum Kepidermis for PCL was observed with IPM, while PCL in EtOH/IPM (1:1) showed high partitioning into dermis. Maximum flux of PCL was observed with EtOH/IPM (1:1). For lipophilic drug like PCL modulation of vehicle seems to be effective approach to increase the permeability across the skin. With a binary combination of EtOH/IPM (1:1) higher concentration of PCL can be delivered to deeper layer of skin whereas with IPM higher concentration of PCL could be localized in the epidermis. While engineering the delivery vehicle selection of solvents should be such that one of them is miscible in both hydrophilic and lipophilic phase like ethanol and another should be lipophilic in nature (IPM in this case) so that an optimum balance between 'push-pull' and 'blending' effect can be achieved.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,