Article ID Journal Published Year Pages File Type
8994925 Journal of Pharmaceutical Sciences 2005 9 Pages PDF
Abstract
Milling is a common procedure to improve bioavailability of many active pharmaceutical ingredients (APIs), which typically have low solubility in water. But such micronization can yield an increase in the cohesiveness of particles. Although particle cohesiveness is desirable for tablet strength in the subsequent formulation process, increased particle cohesiveness can lead to operational difficulties in a milling equipment due to compaction of particles inside. In this article, the impact of milling via a fluidized-bed jet-mill on the cohesive strength and interparticle force was studied using Ethenzamide as a pharmaceutical model compound. As a result, the particle shape was found to affect both the tensile strength of powder bed and the interparticle cohesive force. A powder bed, having relatively high void fraction by direct tensile test, shows a positive correlation between the cohesive force and the particle sphericity, while powders with low void fraction by diametral compression test show a positive correlation between the cohesive force and the angularity of the particle. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,