Article ID Journal Published Year Pages File Type
9001736 Biochemical Pharmacology 2005 20 Pages PDF
Abstract
The insulin receptor-independent insulin-mimetic signalling provoked by the antidiabetic sulfonylurea drug, glimepiride, is accompanied by the redistribution and concomitant activation of lipid raft-associated signalling components, such as the acylated tyrosine kinase, pp59Lyn, and some glycosylphosphatidylinositol-anchored proteins (GPI-proteins). We now found that impairment of glimepiride-induced lipolytic cleavage of GPI-proteins in rat adipocytes by the novel inhibitor of glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), GPI-2350, caused almost complete blockade of (i) dissociation from caveolin-1 of pp59Lyn and GPI-proteins, (ii) their redistribution from high cholesterol- (hcDIGs) to low cholesterol-containing (lcDIGs) lipid rafts, (iii) tyrosine phosphorylation of pp59Lyn and insulin receptor substrate-1 protein (IRS-1) and (iv) stimulation of glucose transport as well as (v) inhibition of isoproterenol-induced lipolysis in response to glimepiride. In contrast, blockade of the moderate insulin activation of the GPI-PLC and of lipid raft protein redistribution by GPI-2350 slightly reduced insulin signalling and metabolic action, only. Importantly, in response to both insulin and glimepiride, lipolytically cleaved hydrophilic GPI-proteins remain associated with hcDIGs rather than redistribute to lcDIGs as do their uncleaved amphiphilic versions. In conclusion, GPI-PLC controls the localization within lipid rafts and thereby the activity of certain GPI-anchored and acylated signalling proteins. Its stimulation is required and may even be sufficient for insulin-mimetic cross-talking to IRS-1 in response to glimepiride via redistributed and activated pp59Lyn.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , ,