Article ID Journal Published Year Pages File Type
9329 Biomaterials 2008 8 Pages PDF
Abstract

Here, we demonstrated dimethyldioctadecylammonium bromide (DODAB), a cationic lipid, bilayer coated Au nanoparticles (AuNPs) could efficiently deliver two types of plasmid DNA into human embryonic kidney cells (HEK 293) in the presence of serum. The transfection efficiency of AuNPs was about five times higher than that of DODAB. The interaction of AuNPs with DNA was characterized with dye intercalation assay and agarose gel electrophoresis. The morphology of the complex of AuNPs with DNA was observed with scanning electron microscope (SEM). The intracellular trafficking of the complex was monitored with transmission electron microscope (TEM). Based on experimental results, the possible mechanism was proposed and the barriers in the process of transfection were discussed. This work demonstrates a simple way to increase the transfection efficiency of cationic lipid through changing the stability of the complex of cationic lipid with DNA. It may provide some insights into understanding and controlling the interaction of cationic lipid with DNA. It also provides a novel way to construct gold nanoparticles-based gene vectors and some insights into learning the process of nanomaterials-mediated transfection.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,