Article ID Journal Published Year Pages File Type
9496507 Journal of Number Theory 2005 9 Pages PDF
Abstract
Let E be an elliptic curve over an infinite field K with characteristic ≠2, and σ∈H1(GK,E)[2] a two-torsion element of its Weil-Châtelet group. We prove that σ is always visible in infinitely many abelian surfaces up to isomorphism, in the sense put forward by Cremona and Mazur in their article (J. Exp. Math. 9(1) (2000) 13). Our argument is a variant of Mazur's proof, given in (Asian J. Math. 3(1) (1999) 221), for the analogous statement about three-torsion elements of the Shafarevich-Tate group in the setting where K is a number field. In particular, instead of the universal elliptic curve with full level-three-structure, our proof makes use of the universal elliptic curve with full level-two-structure and an invariant differential.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,