Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9498368 | Linear Algebra and its Applications | 2005 | 21 Pages |
Abstract
Let k â {1, â¦Â , n}. The k-numerical range of A â Mn is the setWk(A)={(trX*AX)/k:XisnÃk,X*X=Ik},and the k-numerical radius of A is the quantitywk(A)=max{|z|:zâWk(A)}.Suppose k > 1, kâ²Â â {1, â¦Â , nâ²} and nâ²Â < C(n, k)min{kâ², nâ²Â â kâ²}. It is shown that there is a linear map Ï:MnâMnâ² satisfying Wkâ²(Ï(A))=Wk(A) for all A â Mn if and only if nâ²/n = kâ²/k or nâ²/n = kâ²/(n â k) is a positive integer. Moreover, if such a linear map Ï exists, then there are unitary matrix UâMnâ² and nonnegative integers p, q with p + q = nâ²/n such that Ï has the formAâ¦U*[Aââ¯âA︸pâAtââ¯âAt︸q]UorAâ¦U*[Ï(A)ââ¯âÏ(A)︸pâÏ(A)tââ¯âÏ(A)t︸q]U,where Ï : Mn â Mn has the form Aâ¦[(trA)In-(n-k)A]/k. Linear maps ÏË:MnâMnâ² satisfying wkâ²(ÏË(A))=wk(A) for all A â Mn are also studied. Furthermore, results are extended to triangular matrices.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Chi-Kwong Li, Yiu-Tung Poon, Nung-Sing Sze,