Article ID Journal Published Year Pages File Type
9514563 Electronic Notes in Discrete Mathematics 2005 5 Pages PDF
Abstract
A matching M is called uniquely restricted in a graph G if it is the unique perfect matching of the subgraph induced by the vertices that M saturates. G is a unicycle graph if it owns only one cycle. Golumbic, Hirst and Lewenstein observed that for a tree or a graph with only odd cycles the size of a maximum uniquely restricted matching is equal to the matching number of the graph. In this paper we characterize unicycle graphs enjoying this equality. Moreover, we describe unicycle graphs with only uniquely restricted maximum matchings. Using these findings, we show that unicycle graphs having only uniquely restricted maximum matchings can be recognized in polynomial time.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,