Article ID Journal Published Year Pages File Type
9600 Biomaterials 2009 9 Pages PDF
Abstract

In this paper we describe an approach whereby over 2000 individual polymers were synthesized, in situ, on a microscope slide using inkjet printing. Subsequent biological analysis of the entire library allowed the rapid identification of specific polymers with the desired properties. Herein we demonstrate how this array of new materials could be used for the identification of polymers that allow cellular adherence, proliferation and then mild thermal release, for multiple cell lines, including mouse embryonic stem (mES) cells. The optimal, identified hydrogels were successfully scaled-up and demonstrated excellent cell viability after thermal detachment for all cell lines tested. We believe that this approach offers an avenue to the discovery of a specific thermal release polymer for every cell line.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,