Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9602672 | Enzyme and Microbial Technology | 2005 | 9 Pages |
Abstract
A new penicillin acylase was isolated by cloning and functional screening of DNA isolated from a sand soil enrichment culture. Sequence analysis of this enzyme, PAS2, revealed homology to a group of prominent penicillin G acylases, including the intensively studied enzyme of Escherichia coli ATCC 11105. Accordingly, PAS2 was found to be an Ntn-hydrolase with an N-terminal serine as the catalytic nucleophile, located on its 61.9 kDa β-subunit. The α-subunit was shown to have a molecular mass of 25.5 kDa.To evaluate the biocatalytic performance of the new enzyme, the complex kinetic parameters α, β0, and γ were determined for the kinetically controlled synthesis of a number of important semi-synthetic penicillins and cephalosporins. While α is a measure for the relative affinity of the enzyme for the activated acyl donor (AD), β0 and γ quantify the efficiency of acyl-transfer to the β-lactam nucleophile. Compared to the penicillin acylase of E. coli, PAS2 showed superior potential for the synthesis of 6-aminopenicillanic acid (6-APA)-derived antibiotics, allowing the accumulation of up to 2.3-fold more target product at significantly higher conversion rates. In the synthesis of amoxicillin, for instance, 1.6-fold more antibiotic was formed using the new enzyme, making PAS2 an interesting candidate for biocatalytic application.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Esther M. Gabor, Erik J. de Vries, Dick B. Janssen,