Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9603280 | Journal of Bioscience and Bioengineering | 2005 | 6 Pages |
Abstract
The functionalization of the cytochrome P450cam monooxygenase system, which requires electron transfer among three different proteins, was investigated in the micro-scale aqueous compartments of stable water-in-oil (W/O) emulsions formed with the nonionic surfactant tetraethylene glycol dodecyl ether. Neither an organic-aqueous biphasic system nor a non-emulsified organic-aqueous solution containing the same amount of surfactant showed substantial hydroxylation of camphor, a natural substrate of P450cam, whereas substantial monooxygenation activity was detected when stable aqueous compartments were provided by the formation of W/O emulsions. Since the camphor hydroxylation in W/O emulsions was modest, we explored the integration of an enzymatic NADH regeneration system in order to effectively provide a reducing equivalent. Two different dehydrogenases, bacterial glycerol dehydrogenase (GLD) and yeast alcohol dehydrogenase (ADH), were selected, and each of these was coupled with the P450cam catalytic cycle in W/O emulsions. As a result, the camphor hydroxylation rate was successfully improved by approximately 5-fold when GLD was employed under optimized conditions. These results reveal the potential utility of the micro-scale cell-like aqueous compartments of W/O emulsions for multicomponent enzymatic reactions especially for substrates with low aqueous solubility.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Junji Michizoe, Hirofumi Ichinose, Noriho Kamiya, Tatsuo Maruyama, Masahiro Goto,