Article ID Journal Published Year Pages File Type
9604227 Journal of Biotechnology 2005 8 Pages PDF
Abstract
Batch experiments were conducted to investigate the effect of initial pH, between 5 and 10, on fermentative hydrogen production from crude cheese whey (87.5% (v/v) by Clostridium saccharoperbutylacetonicum). Hydrogen was produced over the range of pH studied. The hydrogen production rate and yield peaked at an initial pH 6 and then steadily decreased as the pH increased. The highest rate and yield were 28.3 ml h−1 and 7.89 mmol g−1 lactose, respectively. Sugar consumption was unaffected between pH 5 and 9 and remained at 97%. All final pHs were acidic and increased alongside the initial pH. There was no correlation between the initial pH and the fermentation time; the times were shorter (50-52 h) between pH 6 and 8, and longer (62-82 h) outside this range. A modified Gompertz equation adequately described fermentative hydrogen production from cheese whey. The respective maximum hydrogen production rate and hydrogen potential at an optimal pH of 6 were 47.07 ml h−1 and 1432 ml. Lag phase times were much longer at acidic pHs than at alkaline pHs.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,