Article ID Journal Published Year Pages File Type
9604260 Journal of Biotechnology 2005 16 Pages PDF
Abstract
We present a novel set of autoregulated, bidirectional and multicistronic mammalian as well as lentiviral expression vectors which enable transgene expression fine-tuning by gaseous acetaldehyde. The acetaldehyde-inducible regulation (AIR) technology capitalizes on Aspergillus nidulans components evolved to convert ethanol into metabolic energy. AIR is based on functional interaction of the fungal transactivator AlcR and AlcR-specific chimeric promoters (PAIR) which drive desired transgene expression in mammalian cells only in the presence of gaseous acetaldehyde. We have engineered AIR technology into a variety of different mammalian and lentiviral expression vector systems including (i) a most compact autoregulated expression format harboring alcR and the transgene in a single PAIR-driven transcription unit, (ii) a bidirectional PAIR derivative supporting expression of two transgenes with strict 1:1 transcription stoichiometry and (iii) a multicistronic expression arrangement providing simultaneous translation of three independent transgenes from a single PAIR-controlled transcript. All expression vectors have been validated in Chinese hamster ovary (CHO-K1), baby hamster kidney (BHK-21) and human HeLa cells for gas-inducible (co-)expression of the reporter transgenes such as Bacillus stearothermophilus-derived secreted α-amylase (SAMY), human vascular endothelial growth factor 121 (VEGF121), human placental-secreted alkaline phosphatase (SEAP) and Escherichia coli-derived chloramphenicol acetyl-transferase (CAT). The panoply of mammalian/lentiviral vectors presented here provides a robust and versatile expression platform for the first gas-inducible transgene control system which we expect to foster future advances in gene therapy, tissue engineering as well as biopharmaceutical manufacturing.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,