Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9617862 | Microporous and Mesoporous Materials | 2005 | 12 Pages |
Abstract
The coordination structures of vanadium and iron introduced into MCM-41, a typical mesoporous silica, by both direct hydrothermal synthesis (DHT) and template-ion exchange (TIE) methods have been studied by X-ray absorption spectroscopy (XANES and EXAFS). Vanadium is tetrahedrally coordinated with oxygen in V-MCM-41 prepared by both methods but the location of vanadium is probably different; vanadium is mainly incorporated inside the framework of MCM-41 by the DHT method as the content is lower than approximately 1Â wt%, while the vanadyl tetrahedra are probably dispersed on the wall surface of MCM-41 over the samples by the TIE method. In the case of Fe-MCM-41, the DHT method results in iron atoms mainly in tetrahedral coordination and isolated from each other in the framework of MCM-41. However, aggregated iron oxides with iron in octahedral coordination are mainly observed in the TIE samples. The V-MCM-41 by the TIE method shows better catalytic performances than that by the DHT method in the partial oxidation of methane to formaldehyde with oxygen. However, the Fe-MCM-41 by the DHT method exhibits remarkably higher methane conversion and formaldehyde selectivity than that by the TIE method.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Catalysis
Authors
Qinghong Zhang, Wei Yang, Xiaoxing Wang, Ye Wang, Tetsuya Shishido, Katsuomi Takehira,