Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9650527 | Engineering Applications of Artificial Intelligence | 2005 | 11 Pages |
Abstract
This paper proposes a new methodology which combines supervised and unsupervised learning for evaluating power system dynamic security. Based on the concept of stability margin, pre-fault power system conditions are assigned to the output neurons on the two-dimensional grid with the growing hierarchical self-organizing map technique (GHSOM) via supervised artificial neural networks (ANNs) which perform an estimation of post-fault power system state. The technique estimates the dynamic stability index that corresponds to the most critical value of synchronizing and damping torques of multimachine power systems. ANN-based pattern recognition is carried out with the growing hierarchical self-organizing feature mapping in order to provide adaptive neural network architecture during its unsupervised training process. Numerical tests, carried out on a IEEE 9 bus power system are presented and discussed. The analysis using such method provides accurate results and improves the effectiveness of system security evaluation.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
M. Boudour, A. Hellal,