Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9650588 | Engineering Applications of Artificial Intelligence | 2005 | 10 Pages |
Abstract
Reinforcement learning (RL) has received some attention in recent years from agent-based researchers because it deals with the problem of how an autonomous agent can learn to select proper actions for achieving its goals through interacting with its environment. Although there have been several successful examples demonstrating the usefulness of RL, its application to manufacturing systems has not been fully explored yet. In this paper, Q-learning, a popular RL algorithm, is applied to a single machine dispatching rule selection problem. This paper investigates the application potential of Q-learning, a widely used RL algorithm to a dispatching rule selection problem on a single machine to determine if it can be used to enable a single machine agent to learn commonly accepted dispatching rules for three example cases in which the best dispatching rules have been previously defined. This study provided encouraging results that show the potential of RL for application to agent-based production scheduling.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Yi-Chi Wang, John M. Usher,