Article ID Journal Published Year Pages File Type
9652948 Knowledge-Based Systems 2005 7 Pages PDF
Abstract
This paper presents a novel connectionist memory-rule based model capable of learning the finite-state properties of an input language from a set of positive examples. The model is based upon an unsupervised recurrent self-organizing map with laterally interconnected neurons. A derivation of functional-equivalence theory is used that allows the model to exploit similarities between the future context of previously memorized sequences and the future context of the current input sequence. This bottom-up learning algorithm binds functionally related neurons together to form states. Results show that the model is able to learn the Reber grammar perfectly from a randomly generated training set and to generalize to sequences beyond the length of those found in the training set.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,