Article ID Journal Published Year Pages File Type
9653146 Neural Networks 2005 11 Pages PDF
Abstract
We propose a refinement to the competitive search strategy that allows for a more appropriate fusion of signal and proximal features, thereby promoting a segmentation that is more sensitive to the regional associations of different microbial matter. A refined stop criterion is also suggested such that the dynamically generated number of classes becomes more data dependant. Preliminary experiments are presented and it is found that favouring intensity characteristics in the early phases of learning, whilst relaxing proximity constraints in later phases of learning, offers a general mechanism through which we can improve the segmentation of microbial constituents.1
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,