Article ID Journal Published Year Pages File Type
9654540 Robotics and Autonomous Systems 2005 12 Pages PDF
Abstract
Autonomous intelligent agents often must complete non-Markovian sequential tasks, which require complex recurrent neural controllers. In order to improve the convergence of evolution and reduce the computation time, this paper proposes application of an extended evolutionary algorithm. We implemented an extended multi-population genetic algorithm (EMPGA), where subpopulations apply different evolutionary strategies. In addition, subpopulations compete and cooperate among each other. Results show that EMPGA outperformed single population genetic algorithm (SPGA) by efficiently distributing the number of individuals among subpopulations as different strategies became successful during the course of evolution. In addition, the comparison with other multi-population GA shows that competition between subpopulations improved the quality of solution. The evolved neural controllers were also tested in the real hardware of Cyber Rodent robot.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,