Article ID Journal Published Year Pages File Type
9654911 Computational Geometry 2005 31 Pages PDF
Abstract
Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (adjacent to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embedding algorithms. They also provide the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are described by combinatorial pseudo-triangulations, first defined and studied in this paper. Also of interest are our two proof techniques, one based on Henneberg inductive constructions from combinatorial rigidity theory, the other on a generalization of Tutte's barycentric embeddings to directed graphs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , , , , ,