Article ID Journal Published Year Pages File Type
9655974 Electronic Notes in Theoretical Computer Science 2005 50 Pages PDF
Abstract
The first paper published on Stone Duality showed that the overt discrete objects (those admitting ∃ and = internally) form a pretopos, i.e. a category with finite limits, stable disjoint coproducts and stable effective quotients of equivalence relations. Using an N-indexed least fixed point axiom, here we show that this full subcategory is an arithmetic universe, having a free semilattice (“collection of Kuratowski-finite subsets”) and a free monoid (“collection of lists”) on any overt discrete object. Each finite subset is represented by its pair (□, ◊) of modal operators, although a tight correspondence with these depends on a stronger Scott-continuity axiom. Topologically, such subsets are both compact and open and also involve proper open maps. In applications of ASD this can eliminate lists in favour of a continuation-passing interpretation.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,