Article ID Journal Published Year Pages File Type
9657690 Theoretical Computer Science 2005 15 Pages PDF
Abstract
Our scheme for ANN in low-dimensional metric spaces is the first to yield efficient algorithms without relying on any additional assumptions on the input. In previous approaches (e.g., [K.L. Clarkson, Nearest neighbor queries in metric spaces, Discrete Comput. Geom. 22(1) (1999) 63-93; D. Karger, M. Ruhl, Finding nearest neighbors in growth-restricted metrics, in: 34th Annu. ACM Symp. on the Theory of Computing, 2002, pp. 63-66; R. Krauthgamer, J.R. Lee, Navigating nets: simple algorithms for proximity search, in: 15th Annu. ACM-SIAM Symp. on Discrete Algorithms, 2004, pp. 791-801; K. Hildrum, et al., A note on finding nearest neighbors in growth-restricted metrics, in: Proc. of the 15th Annu. ACM-SIAM Symp. on Discrete Algorithms, 2004, pp. 560-561]), even spaces with dim(X)=O(1) sometimes required Ω(n) query times.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,