Article ID Journal Published Year Pages File Type
9657776 Theoretical Computer Science 2005 25 Pages PDF
Abstract
We illustrate the importance of our model of computation by giving simple reductions to show that several motion-planning problems are PSPACE-hard. Our main result along these lines is that classic unrestricted sliding-block puzzles are PSPACE-hard, even if the pieces are restricted to be all dominoes (1×2 blocks) and the goal is simply to move a particular piece. No prior complexity results were known about these puzzles. This result can be seen as a strengthening of the existing result that the restricted Rush HourTM puzzles are PSPACE-complete [Theoret. Comput. Sci. 270(1-2) (2002) 895], of which we also give a simpler proof. We also greatly strengthen the conditions for the PSPACE-hardness of the Warehouseman's Problem [Int. J. Robot. Res. 3(4) (1984) 76], a classic motion-planning problem. Finally, we strengthen the existing result that the pushing-blocks puzzle Sokoban is PSPACE-complete [In: Proc. Internat. Conf. on Fun with Algorithms, Elba, Italy, June 1998, pp. 65-76.], by showing that it is PSPACE-complete even if no barriers are allowed.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,