Article ID Journal Published Year Pages File Type
9659193 AEU - International Journal of Electronics and Communications 2005 9 Pages PDF
Abstract
In this paper, the system model and performance analysis of macroscopic diversity combining (MDC) multiple-input multiple-output (MIMO) systems are presented for mobile cellular communication applications. The channel capacity of MIMO systems will deteriorate if the dual antenna array (DAA) spacing is insufficient or the scattering environment does not provide completely uncorrelated channels. In addition, the shadowing component of the directional signal is a common factor among the scattered channels, resulting in significant reductions in obtainable channel capacity. Therefore, in this paper, a macroscopic diversity topology is applied to maximize the spatial multiplexing gain while combating the shadowing phenomena. The channel capacity as well as its upper and lower bounds are derived for MIMO-based MDC systems. Additionally, the outage capacity for the proposed MDC system topology has been analyzed. Compared to a single communicating MIMO system pair, the results show that the macroscopic diversity MIMO communication topology enables a larger number of uncorrelated shadowed and scattered channels to exist, and therefore, improvements of enhanced channel capacity and reduced outage is obtained.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, ,