Article ID Journal Published Year Pages File Type
9662224 Computer Methods and Programs in Biomedicine 2005 10 Pages PDF
Abstract
Ordered subset expectation-maximization (OSEM) method in positron emission tomography (PET) has been very popular recently. It is an iterative algorithm and provides images with superior noise characteristics compared to conventional filtered backprojection (FBP) algorithms. Due to the lack of smoothness in images in OSEM iterations, however, some type of inter-smoothing is required. For this purpose, the smoothing based on the convolution with the Gaussian kernel has been used in clinical PET practices. In this paper, we incorporated a robust wavelet de-noising method into OSEM iterations as an inter-smoothing tool. The proposed wavelet method is based on a hybrid use of the standard wavelet shrinkage and the robust wavelet shrinkage to have edge preserving and robust de-noising simultaneously. The performances of the proposed method were compared with those of the smoothing methods based on the convolution with Gaussian kernel using software phantoms, physical phantoms, and human PET studies. The results demonstrated that the proposed wavelet method provided better spatial resolution characteristic than the smoothing methods based on the Gaussian convolution, while having comparable performance in noise removal.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,