Article ID Journal Published Year Pages File Type
9662264 Computers & Mathematics with Applications 2005 8 Pages PDF
Abstract
An analysis of hydromagnetic flow is examined in a semi-infinite expanse of electrically conducting rotating Johnson-Segalman fluid bounded by nonconducting plate in the presence of a transverse magnetic field and the governing equations are modeled first time. The structure of the velocity distribution and the associated hydromagnetic boundary layers are investigated including the case of resonant oscillations. It is shown that unlike the hydrodynamic situation for the case of resonance, the hydromagnetic steady solution satisfies the boundary condition at infinity. The inherent difficulty involved in the hydrodynamic resonance case has been resolved in the presence analysis.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,