Article ID Journal Published Year Pages File Type
9669553 Computer Vision and Image Understanding 2005 16 Pages PDF
Abstract
In this paper, we present a perceptual organization-based method for detecting moving objects from image sequences. To achieve the characteristics of real-time, efficiency, and robustness, a perceptual computation model of edge partitioning and grouping was proposed for the extraction of edge traces on the fly. Each edge trace is made up of generic edge tokens (GETs) which are perceptual features, and defined qualitatively based on the principles of Gestalt laws. Motion detection uses two basic computations: (1) segment motion GETs (MGETs) by computing the gradient differences between GET streams in consecutive frames; and (2) detect motion objects by perceptually grouping MGETs into object clusters. The MGETs in each cluster are constrained by the proximity of the features, and the motion continuation of the cluster measured by motion persistence, etc. Experimental results are provided.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,