Article ID Journal Published Year Pages File Type
9732517 International Journal of Forecasting 2005 18 Pages PDF
Abstract
This article analyzes the use of model selection criteria for detecting nonlinearity in the residuals of a linear model. Model selection criteria are applied for finding the order of the best autoregressive model fitted to the squared residuals of the linear model. If the order selected is not zero, this is considered as an indication of nonlinear behavior. The BIC and AIC criteria are compared to some popular nonlinearity tests in three Monte Carlo experiments. We conclude that the BIC model selection criterion seems to offer a promising tool for detecting nonlinearity in time series. An example is shown to illustrate the performance of the tests considered and the relationship between nonlinearity and structural changes in time series.
Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
, ,