Article ID Journal Published Year Pages File Type
973876 Physica A: Statistical Mechanics and its Applications 2015 8 Pages PDF
Abstract

•We calculate the time-dependent Shannon entropy of three log-periodic oscillators.•We calculate the time-dependent Fisher information (FI) for the same oscillators.•Relations among the (FI) and the Stam and Cramer–Rao inequalities are discussed.

We calculate the time-dependent Shannon (SxSx and SpSp) entropy and Fisher (FxFx and FpFp) information of three log-periodic oscillators. We obtain a general expression for Sx,pSx,p and Fx,pFx,p in the state n=0n=0 in terms of ρρ, a c-number quantity satisfying a nonlinear differential equation. For two out of three oscillators Sx,pSx,p and Fx,pFx,p depend on time, but Sx+SpSx+Sp and FxFpFxFp do not. The other oscillator behaves as the time-independent harmonic oscillator where Sx,pSx,p and Fx,pFx,p are all constants. Relations among the Fisher information and the Stam and Cramer–Rao inequalities are also discussed.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,