Article ID Journal Published Year Pages File Type
974793 Physica A: Statistical Mechanics and its Applications 2015 8 Pages PDF
Abstract
Here, we show that an optimized Lévy-like walk (μ≈2.00) and the Weber-Fechner law can be achieved in our new multi-agent based model that depends on step lengths. Weber-Fechner equation is strongly related to power-law. This equation is sometimes used in order to obtain power-law tailed distributions in observational levels. However, no study has reported how these two popular equations were achieved in micro or mechanistic levels. We propose a new random walk algorithm based on a re-valued algorithm, in which an agent has limited memory capacity, i.e., an agent has a memory of only four recent random numbers (limitation number). Using these random numbers, the agent alters the directional heuristic if the agent experiences moving directional biases. In this paper, the initial limitation number varies depending on the interaction among agents. Thus, agents change their limitation number and produce time delay in respect to rule change events. We show that slope values are variable compared with isolate foraging even though both indicate power-law tailed walks derived from Weber-Fechner equation.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,