Article ID Journal Published Year Pages File Type
975807 Physica A: Statistical Mechanics and its Applications 2006 5 Pages PDF
Abstract
It is well known that, for chaotic systems, the production of relevant entropy (Boltzmann-Gibbs) is always linear and the system has strong (exponential) sensitivity to initial conditions. In recent years, various numerical results indicate that basically the same type of behavior emerges at the edge of chaos if a specific generalization of the entropy and the exponential are used. In this work, we contribute to this scenario by numerically analyzing some generalized nonextensive entropies and their related exponential definitions using z-logistic map family. We also corroborate our findings by testing them at accumulation points of different cycles.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,