Article ID Journal Published Year Pages File Type
9770225 Journal of Molecular Structure 2005 7 Pages PDF
Abstract
Three natural products, Coumarin (1), p-hydroxybenzoic acid (2), trans-cinnamic acid (3) were isolated from the natural plant of indigenous cinnamon and the structures including relative stereochemistry were elucidated on the basis of spectroscopic data and theoretical calculations. Their sterochemical structures were determined by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The p-hydroxybenzoic acid complex with water is reported to show the existence of two hydrogen bonds. The two hydrogen bonds are formed in the water molecule of two hydrogen-accepting oxygen of carbonyl group of the p-hydroxybenzoic acid. The intermolecular interaction two hydrogen bond of the model system of the water-p-hydroxybenzoic acid was investigated. An experimental study and a theoretical analysis using the B3LYP/6-31G* method in the gaussian-03 package program were conducted on the three natural products. The theoretical results are supplemented by experimental data. Optimal geometric structures of three compounds were also determined. The calculated molecular mechanics compared quite well with those obtained from the experimental data. The ionization potentials, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, energy gaps, heat of formation, atomization energies, and vibration frequencies of the compounds were also calculated. The results of the calculations show that three natural products are stable molecules with high reactive and various other physical properties. The study also provided an explicit understanding of the sterochemical structure and thermodynamic properties of the three natural products.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,