Article ID Journal Published Year Pages File Type
978210 Physica A: Statistical Mechanics and its Applications 2007 10 Pages PDF
Abstract

We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (-1<α<1) and fractional Brownian motion (1<α<3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,