Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9793709 | Journal of Nuclear Materials | 2005 | 5 Pages |
Abstract
Tensile specimens, prepared from AISI 316L austenitic stainless steel in three conditions (solution-annealed, cold-worked and electron-beam welded) and from OPTIFER martensitic stainless steel in tempered condition, were irradiated in the Swiss spallation neutron source (SINQ) at 90-400 °C to displacement doses from 3 dpa to 11 dpa. The mechanical properties were measured by tensile testing at room temperature and 250 °C, respectively, and subsequent metallographic analysis was employed. The tensile results indicated that the strength of AISI 316L-SA is quite similar or a little higher than in 316L-EBW but elongation of SA 316L is somewhat larger than EBW for both unirradiated and irradiated samples. The cold-worked specimens revealed much higher strength but almost zero strain-to-necking after irradiation. The results from OPTIFER samples showed that irradiation hardening increases with dose, which is accompanied by a dramatic reduction of uniform elongation beginning at very low dose. The metallographic analysis showed that the samples of AISI 316L-EBW failed in the welded zone.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
J. Chen, M. Rödig, F. Carsughi, Y. Dai, G.S. Bauer, H. Ullmaier,