Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9793716 | Journal of Nuclear Materials | 2005 | 12 Pages |
Abstract
The dependence of helium production on radiation hardening and -embrittlement has been examined in a reduced-activation martensitic F82H steel (8Cr-2W-0.2V-0.04Ta-0.1C) irradiated at 250 °C to 2.3 dpa. In this study, 10B and 11B-doped specimens were irradiated to minimize the errors from the effect of B on mechanical properties by comparing the results. The specimens used were 10B-doped, 10B + 11B-doped and 11B-doped F82H steels. The total amounts of doping boron were about 60 mass ppm. The range of helium concentration produced in the specimens was from about 5 to about 330 appm. Tensile and fracture toughness tests were performed after neutron irradiation. 50 MeV-He2+ irradiation was also performed to implant about 85 appm He atoms at 120 °C by AVF cyclotron to 0.03 dpa, and small punch testing was performed to obtain ductile-to-brittle transition temperatures (DBTT). Radiation hardening of the neutron-irradiated specimens increased slightly with increasing helium production. The 100 MPa m1/2 DBTT for the F82H + 11B, F82H + 10B + 11B, and F82H + 10B specimens were 40, 110, and 155 °C, respectively. The shifts of DBTT due to helium production were evaluated as about 70 °C by 190 appm He and 115 °C by 330 appm He. In cyclotron experiment using standard F82H, a similar DBTT shift due to He was measured. These results suggest that helium production can increase the DBTT.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
E. Wakai, S. Jitsukawa, H. Tomita, K. Furuya, M. Sato, K. Oka, T. Tanaka, F. Takada, T. Yamamoto, Y. Kato, Y. Tayama, K. Shiba, S. Ohnuki,