Article ID Journal Published Year Pages File Type
9823116 Acta Astronautica 2005 7 Pages PDF
Abstract
Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene (FB)) and a solute (polystyrene (PAMS)) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number solutocapillary convection in the shells. Comparison with results from linear theory and available experiments are made.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,