Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9851472 | Nuclear Physics A | 2005 | 29 Pages |
Abstract
This paper describes a tentative relativistic quantum mechanics approach inspired by Dirac's point-form, which is based on the physics description on a hyperboloid surface. It is mainly characterized by a non-standard relation of the constituent momenta of some system to its total momentum. Contrary to instant- and front-form approaches, where it takes the form of a 3-dimensional δ(â¯) function, the relation is given here by a Lorentz-scalar constraint. Thus, in the c.m. frame, the sum of the constituent momenta, which differs from zero off-energy shell, has no fixed direction, in accordance with the absence of preferred direction on a hyperboloid surface. To some extent, this gives rise to an extra degree of freedom entering the description of the system of interest. The development of a consistent formalism within this picture is described. Comparison with other approaches is made.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
B. Desplanques,