Article ID Journal Published Year Pages File Type
987545 Socio-Economic Planning Sciences 2008 17 Pages PDF
Abstract

When measuring technical efficiency with existing data envelopment analysis (DEA) techniques, mean efficiency scores generally exhibit volatile patterns over time. This appears to be at odds with the general perception of learning-by-doing management, due to Arrow [The economic implications of learning by doing. Review of Economic Studies 1964; 154–73]. Further, this phenomenon is largely attributable to the fundamental assumption of deterministic data maintained in DEA models, and to the difficulty such models have in incorporating environmental influences. This paper proposes a three-stage method to measure DEA efficiency while controlling for the impacts of both statistical noise and environmental factors. Using panel data on Japanese banking over the period 1997–2001, we demonstrate that the proposed approach greatly mitigates these weaknesses of DEA models. We find a stable upward trend in mean measured efficiency, indicating that, on average, the bankers were learning over the sample period. Therefore, we conclude that this new method is a significant improvement relative to those DEA models currently used by researchers, corporate management, and industrial regulatory bodies to evaluate performance of their respective interests.

Related Topics
Social Sciences and Humanities Business, Management and Accounting Strategy and Management
Authors
, ,