Article ID Journal Published Year Pages File Type
9877666 Physica D: Nonlinear Phenomena 2005 29 Pages PDF
Abstract
Numerical evidence is presented for the existence of stable heteroclinic cycles in large parameter regions of the one-dimensional complex Ginzburg-Landau equation (CGL) on the unit, spatially periodic domain. These cycles connect different spatially and temporally inhomogeneous time-periodic solutions as t→±∞. A careful analysis of the connections is made using a projection onto five complex Fourier modes. It is shown first that the time-periodic solutions can be treated as (relative) equilibria after consideration of the symmetries of the CGL. Second, the cycles are shown to be robust since the individual heteroclinic connections exist in invariant subspaces. Thirdly, after constructing appropriate Poincaré maps around the cycle, a criteria for temporal stability is established, which is shown numerically to hold in specific parameter regions where the cycles are found to be of Shil'nikov type. This criterion is also applied to a much higher-mode Fourier truncation where similar results are found. In regions where instability of the cycles occurs, either Shil'nikov-Hopf or blow-out bifurcations are observed, with numerical evidence of competing attractors. Implications for observed spatio-temporal intermittency in situations modelled by the CGL are discussed.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,