Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9882303 | Archives of Biochemistry and Biophysics | 2005 | 11 Pages |
Abstract
Transition metal-mediated oxidation of hydroquinones is an important physiologic reaction, and copper(II) effectively catalyzes the reaction in phosphate-buffered saline (PBS). Studies reported herein in phosphate buffer alone demonstrate that copper(II) is an ineffective catalyst in the absence of coordinating ligands, but that 1,10-phenanthroline and histamine facilitate the copper(II)-mediated oxidation of hydroquinone and its 2,5- and 2,6-di-tert-butyl analogs to the corresponding benzoquinones. The high concentration of chloride in PBS is the key element that allows copper(II) to work in this system. Although the bis-bathocuproine disulfonate complex of Cu(II), (BC)2Cu(II), is a strong stoichiometric oxidant, stoichiometric amounts of copper(II) in the presence of ligands other than BC oxidize hydroquinones very slowly under anaerobic conditions. Thus, the rapid copper(II)-catalyzed reaction operating aerobically does not involve a simple ping-pong reduction of copper(II) to copper(I) by hydroquinone and reoxidation of copper(I) by O2.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Subrata Mandal, Najam H. Kazmi, Lawrence M. Sayre,