Article ID Journal Published Year Pages File Type
9882410 Archives of Biochemistry and Biophysics 2005 12 Pages PDF
Abstract
The transformation catalyzed by HPPD has both agricultural and therapeutic significance. HPPD catalyzes the second step in the pathway for the catabolism of tyrosine, that is common to essentially all aerobic forms of life. In plants this pathway has an anabolic branch from homogentisate that forms essential isoprenoid redox cofactors such as plastoquinone and tocopherol. Naturally occurring multi-ketone molecules act as allelopathic agents by inhibiting HPPD and preventing the production of homogentisate and hence required redox cofactors. This has been the basis for the development of a range of very effective herbicides that are currently used commercially. In humans, deficiencies of specific enzymes of the tyrosine catabolism pathway give rise to a number of severe metabolic disorders. Interestingly, HPPD inhibitor/herbicide molecules act also as therapeutic agents for a number of debilitating and lethal inborn defects in tyrosine catabolism by preventing the accumulation of toxic metabolites.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
,