Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9886581 | Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2005 | 10 Pages |
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) β/δ activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARβ/δ-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARβ/δ agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-κB activation. Increased NF-κB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARβ/δ and p65. Interestingly, treatment with the PPARβ/δ agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARβ/δ signaling through increased NF-κB activity.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Mireia Jové, Juan C. Laguna, Manuel Vázquez-Carrera,