Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9887787 | Biochimie | 2005 | 8 Pages |
Abstract
Histone proteins are essential components of eukaryotic chromosomes. In metazoans, they are produced from the so-called replication-dependent histone genes. The biogenesis of histones is tightly coupled to DNA replication in a stoichiometric manner because an excess of histones is highly toxic for the cell. Therefore, a strict cell cycle-regulation of critical factors required for histone expression ensures exclusive S-phase expression. This review focuses on the molecular mechanisms responsible for such a fine expression regulation. Among these, a large part will be dedicated to post-transcriptional events occurring on histone mRNA, like histone mRNA 3â² end processing, nucleo-cytoplasmic mRNA export, translation and mRNA degradation. Many factors are involved, including an RNA-binding protein called HBP, also called SLBP (for hairpin- or stem-loop-binding protein) that binds to a conserved hairpin located in the 3â² UTR part of histone mRNA. HBP plays a pivotal role in the expression of histone genes since it is necessary for most of the steps of histone mRNA metabolism in the cell. Moreover, the strict S-phase expression pattern of histones is achieved through a fine cell cycle-regulation of HBP. A large part of the discussion will be centered on the critical role of HBP in histone biogenesis.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Sophie Jaeger, Sharief Barends, Richard Giegé, Gilbert Eriani, Franck Martin,