Article ID Journal Published Year Pages File Type
9893136 Microvascular Research 2005 10 Pages PDF
Abstract
Exposure to low oxygen induces adaptive changes at the microvascular level that are beneficial to cell survival. These adaptive changes involve complex signaling mechanisms between the vascular endothelial cell and the pericyte, and are important to the maintenance of vascular homeostasis and hemostasis. We have investigated the early response of the central nervous system (CNS) microvascular pericyte to low oxygen. In vitro exposure of primary rat CNS pericytes to low oxygen induced the rapid synthesis and release of the cyclopentenone prostaglandin (PG) PGD2 and PGJ2 within 15-30 min following hypoxic stress signal. Hypoxia-induced release of PGD2/PGJ2 was COX-1 dependent and did not involve COX-2. The exogenous addition of 15-deoxyΔ12,14 PGJ2 to pericytes under normoxic conditions increased glut-1 protein in the absence of hypoxia. PGD2 and PGJ2 may be early signaling molecules in the pericyte stress response.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,